First order autoregressive periodically correlated model in Banach spaces: Existence and central limit theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of Hilbert valued periodically correlated‎ autoregressive processes

‎In this paper we provide sufficient condition for existence of a‎ ‎unique Hilbert valued ($mathbb{H}$-valued) periodically‎ ‎correlated solution to the first order autoregressive model‎ ‎$X_{n}=rho _{n}X_{n-1}+Z_{n}$‎, ‎for $nin mathbb{Z}$‎, ‎and‎ ‎formulate the existing solution and its autocovariance operator‎. ‎Also we specially investigate equivalent condition for the‎ ‎coordinate process...

متن کامل

Central Limit Theorem for Banach Space Valued Fuzzy Random Variables

In this paper we prove a central limit theorem for Borel measurable nonseparably valued random elements in the case of Banach space valued fuzzy random variables.

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Theorem of Sternberg-chen modulo Central Manifold for Banach Spaces

We consider C∞-diffeomorphisms on a Banach space with a fixed point 0. Suppose that these diffeomorphisms have C∞ non-contracting and non-expanding invariant manifolds, and formally conjugate along their intersection (the center). We prove that they admit local C∞ conjugation. In particular, subject to non-resonance condition, there exists a local C∞ linearization of the diffeomorphisms. It als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.12.037